Каково приблизительно количество белка в плазме крови большинства с х животных

Химический состав и физические свойства крови

По данным В. А. Андреева и Абдергальдена, в 1000 весовых частях свежей крови различных сельскохозяйственных животных содержится следующее количество различных веществ:

Составные части крови

Крупный рогатый скот

Белок (кроме гемоглобина)

а также небольшое количество калия, окиси железа, кальция, фосфора, магния, хлора и неорганического фосфора.

% от общего количества

% от общего количества

В чистом виде альбумин крови представляет собой твердое кристаллическое или аморфное вещество беловатого или желтоватого цвета. По Хаммарстену, кровь различных сельскохозяйственных животных содержит альбумина:

Крупный рогатый скот

Содержание альбумина в %

% от общего количества

% от общего количества

Из приведенных данных видно, что по химическому составу альбумины и глобулины очень близки между собой.

В крови различных видов сельскохозяйственных животных содержится следующее количество глобулинов:

Крупный рогатый скот

Содержание глобулина в крови в %

Альбумин и глобулин свойственны преимущественно плазме крови.

Сахара в крови представлены главным образом глюкозой.

Из липоидов в крови постоянно присутствуют как нейтральные жиры, так и холестерины и лецитины. Количество их колеблется в зависимости от характера пищи животного.

Минеральные вещества крови примерно на 75% состоят из хлоридов и на 25% из карбонатов и фосфатов (последних очень немного).

В 1000 частях плазмы дефибринированной крови (так называемого «серума») разных животных содержится следующее количество различных веществ:

Составные части серума

Крупный рогатый скот

а также небольшое количество калия, кальция, магния, фосфора и хлора.

Таким образом, в плазме крови отсутствует гемоглобин, а следовательно, и окись железа, зато почти все количество Сахаров, жиров и жирных кислот крови сконцентрировано именно в плазме. Для плазмы характерны наличие фибриногена и большое количество альбуминов и глобулинов. Из минеральных веществ преобладают соли Na, особенно NaCl.

Химический состав отсепарированной массы форменных элементов крови разных видов сельскохозяйственных животных такой (в промиллях):

Составные части твердых

Крупный рогатый скот

а также небольшое количество калия, железа, кальция, магния, хлора и фосфора.

Основную массу форменных элементов крови составляют эритроциты (около 99,9%). Красные кровяные тельца содержат около 60% воды и около 40% сухого остатка. 75-85% этого сухого вещества составляет гемоглобин, а остальные 15-25% различные белки (65%) и липоиды (35%). Липоиды находятся преимущественно в оболочке эритроцитов.

Протоплазма белых кровяных телец состоит главным образом из цитопротеидов, а ядра их из нуклеопротеидов, содержащих фосфор.

Реакция крови при определении ее лакмусом слегка щелочная; рН крови различных видов животных колеблется от 7,24 до 7,97. Эти цифры показывают, что реакция крови почти нейтральна и очень немного сдвинута в сторону щелочности.

Удельный вес крови У = 1,055, эритроцитов У = 1,08, плазмы У = 1,027-1,034. Больший удельный вес эритроцитов позволяет отделять их от плазмы сепарированием.

Вязкость крови, определенная путем изучения быстроты протекания ее через капиллярную трубку, по сравнению с водой равна примерно 5° Э. Она колеблется в зависимости от содержания кровяных телец и процента сухого остатка.

Вязкость дефибрированной крови крупного рогатого скота 2,5° Э; вязкость ее серума 1,75° Э; вязкость форменных элементов 80,0° Э (по данным В. А. Андреева).

Из сказанного видно, что химический состав и физические свойства крови различных видов сельскохозяйственных животных имеют некоторые весьма существенные отличия.

Кровь свиней характеризуется высоким содержанием форменных элементов (42% от общей массы крови), что обусловливает большой выход сухого остатка при выпаривании (21%). Содержание гемоглобина в свиной крови очень высокое (14%). Напротив, прочих белков меньше, чем в крови других сельскохозяйственных животных. Содержание холестерина незначительно, хотя количество нейтральных жиров весьма велико. Из минеральных веществ в крови свиней относительно много солей калия, но мало солей натрия. Плазма крови почти бесцветна, так как лишена пигментов.

Кровь крупного рогатого скота содержит сухого вещества лишь 19%; большее содержание воды обусловливает меньшее количество форменных элементов (35%). Соответственно гемоглобина в крови крупного рогатого скота меньше (10%), чем в крови свиней (14%). Количество же прочих белков в 11/2 раза больше. Жира в крови крупного рогатого скота очень мало, но количество холестерина сравнительно большое. Из солей резко преобладают соли натрия.

Кровь овец по своему составу близка к крови крупного рогатого скота, но имеет еще меньшее количество форменных элементов (около 30%), твердых веществ (18%) и гемоглобина (9%). Количество жира относительно высокое. Состав минеральных веществ почти тот же, что и в крови крупного рогатого скота.

Кровь лошадей содержит 40% форменных элементов и 20% твердых веществ. Количество гемоглобина относительно высокое (12,5%). Холестерина и нейтральных жиров мало.

Источник

Каково приблизительно количество белка в плазме крови большинства с х животных

Состав крови

Плазма крови, ее состав. Плазма крови является довольно сложной биологической средой. Она находится в тесной связи с тканевыми жидкостями организма. Относительная плотность плазмы равна 1,029-1,034.

В состав плазмы крови входят вода (90-92%) и сухой остаток (8-10%). Сухой остаток состоит из органических и неорганических веществ. К органическим веществам плазмы крови относятся:

2) небелковые азотсодержащие соединения (аминокислоты, полипептиды, мочевина, мочевая кислота, креатин, креатинин, аммиак). Общее количество небелкового азота в плазме (так называемого остаточного азота) составляет 11-15 ммоль/л (30-40 мг%). При нарушении функции почек, выделяющих шлаки из организма, содержание остаточного азота в крови резко возрастает;

4) ферменты; некоторые из них участвуют в процессах свертывания крови и фибринолиза, в частности протромбин и профибринолизин. В плазме содержатся также ферменты, расщепляющие гликоген, жиры, белки и др.

Читайте также:  Ученым известно свыше полутора миллионов видов животных и около

Из тканей организма в процессе его жизнедеятельности в кровь поступает большое количество продуктов обмена, биологически активных веществ (серотонин, гистамин), гормонов, из кишечника всасываются питательные вещества, витамины и т. д. Однако состав плазмы существенно не изменяется. Постоянство состава плазмы обеспечивается регуляторными механизмами, оказывающими влияние на деятельность отдельных органов и систем организма, восстанавливающих состав и свойства его внутренней среды.

Осмотическое и онкотическое давление крови. Осмотическим давлением называется давление, которое обусловлено электролитами и некоторыми неэлектролитами. с низкой молекулярной массой (глюкоза и др.). Чем выше концентрация таких веществ в растворе, тем выше осмотическое давление. Осмотическое давление плазмы зависит в основном от концентрации в ней минеральных солей и составляет в среднем 768, 2 кПа (7,6 атм). Около 60% всего осмотического давления обусловлено солями натрия. Онкотическое давление плазмы обусловлено белками которые способны удерживать воду. Величина онкотического давления колеблется в пределах от 3,325 до 3,99 кПа (25-30 мм рт. ст.). Значение онкотического давления чрезвычайно велико, так как за счет него жидкость (вода) удерживается в сосудистом русле. Из белков плазмы наибольшее участие в обеспечении онкотического давления принимают альбумины, так как вследствие малых размеров и высокой гидрофильности они обладают выраженной способностью притягивать к себе воду.

Функции клеток организма могут осуществляться лишь при относительной стабильности осмотического и онкотического давления (коллоидно-осмотического давления). Постоянство осмотического и онкотического давления крови у высокоорганизованных животных является общим законом, без которого невозможно их нормальное существование.

Если эритроциты поместить в солевой раствор, имеющий одинаковое осмотическое давление с кровью, то они заметным изменениям не подвергаются. При помещении эритроцитов в раствор с высоким осмотическим давлением клетки сморщиваются, так как вода начинает выходить из них в окружающую среду. В растворе с низким осмотическим давлением эритроциты набухают и разрушаются. Это происходит потому, что вода из раствора с низким осмотическим давлением начинает поступать в эритроциты, оболочка клетки не выдерживает повышенного давления и лопается.

Гемолиз и его виды. Гемолизом называют выход гемоглобина из эритроцитов через измененную оболочку и появление его в плазме. Гемолиз может наблюдаться как в сосудистом русле, так и вне организма.

В организме постоянно в небольших количествах осуществляется гемолиз при отмирании старых эритроцитов. В норме он происходит лишь в печени, селезенке, красном костном мозге. При этом гемоглобин «поглощается» клетками указанных органов и в плазме циркулирующей крови отсутствует. При некоторых состояниях организма гемолиз в сосудистой системе переходит границы нормы, гемоглобин появляется в плазме циркулирующей крови (гемоглобинемия) и начинает выделяться с мочой (гемоглобинурия). Это наблюдается, например, при укусе ядовитых змей, скорпионов, множественных укусах пчел, при малярии, переливании несовместимой в групповом отношении крови.

В организме всегда имеются условия для сдвига реакции в сторону ацидоза или алкалоза. В клетках и тканях постоянно образуются кислые продукты: молочная, фосфорная и серная кислоты (при окислении фосфора и серы белковой пищи). При усиленном потреблении растительной пищи в кровоток постоянно поступают основания натрия, калия, кальция. Напротив, при преимущественном питании мясной пищей в крови создаются условия для накопления кислых соединений. Однако величина реакции крови постоянна. Поддержание постоянства реакции крови обеспечивать так называемыми буферными системами, я также деятельностью главным образом легких, почек и потовых желез.

Указанные буферные системы нейтрализуют значительную часть поступающих в кровь кислот и щелочей и препятствуют тем самым сдвигу активной реакции крови. Главными буферами тканей являются белки и фосфаты.

В процессе обмена веществ образуется больше кислых продуктов, чем щелочных, поэтому опасность сдвига реакции в сторону ацидоза является большей, чем опасность сдвига в сторону алкалоза. В соответствии с этим буферные системы крови и тканей обеспечивают более значительную устойчивость по отношению к кислотам, чем к щелочам. Так, для сдвига реакции плазмы крови в щелочную сторону приходится прибавлять к ней в 40-70 раз больше едкого натра, чем к чистой воде. Для того же, чтобы вызвать сдвиг реакции крови в кислую сторону, к ней необходимо добавить в 327 раз больше хлористоводородной (соляной) кислоты, чем к воде. Щелочные соли слабых кислот, содержащиеся в крови, образуют так называемый щелочной резерв крови. Однако, несмотря на наличие буферных систем и хорошую защищенность организма от возможных изменений рН крови, сдвиги в сторону ацидоза или алкалоза все же иногда встречаются как в физиологических, так и, в особенности, в патологических условиях.

Форменные элементы крови

К форменным элементам крови относятся эритроциты (красные кровяные тельца), лейкоциты (белые кровяные тельца), тромбоциты (кровяные пластинки).

Эритроциты

Функции эритроцитов. Дыхательная функция выполняется эритроцитами за счет пигмента гемоглобина, который обладает способностью присоединять к себе и отдавать кислород и углекислый газ.

Питательная функция эритроцитов состоит в адсорбировании на их поверхности аминокислот, которые они транспортируют к клеткам организма от органов пищеварения.

Гемоглобин

Гемоглобин представляет собой сложное химическое соединение, состоящее из 600 аминокислот, его молекулярная масса равна 66000±2000.

Различные виды гемоглобина различаются между собой по аминокислотному составу, устойчивости к щелочам и сродству к кислороду (способность связывать кислород). Так, HbF более устойчив к щелочам, чем НbА. Он может насыщаться кислородом на 60%, хотя в тех же условиях гемоглобин матери насыщается всего на 30%.

Гемоглобин синтезируется в клетках красного костного мозга. Для нормального синтеза гемоглобина необходимо достаточное поступление железа. Разрушение молекулы гемоглобина осуществляется преимущественно в клетках мононуклеарной фагоцитарной системы (ретикулоэндотелиальная система), к которой относятся печень, селезенка, костный мозг, моноциты. При некоторых заболеваниях крови обнаружены гемоглобины, отличающиеся по химической структуре и свойствам от гемоглобина здоровых людей. Эти виды гемоглобина получили название аномальных гемоглобинов.

Читайте также:  Находки переходных форм изучение филогенетических рядов животных являются доказательством эволюции

Функции гемоглобина. Гемоглобин выполняет свои функции лишь при условии нахождения его в эритроцитах. Коли по каким-то причинам гемоглобин появляется в плазме (гемоглобинемия), то он неспособен выполнять свои функции, так как быстро захватывается клетками мононуклеарной фагоцитарной системы и разрушается, а часть его выводится через почечный фильтр (гемоглобинурия). Появление в плазме большого количества гемоглобина увеличивает вязкость крови, повышает величину онкотического давления, что приводит к нарушению движения крови и образования тканевой жидкости.

Гемоглобин выполняет следующие основные функции. Дыхательная функция гемоглобина осуществляется за счет переноса кислорода от легких к тканям и углекислого газа от клеток к органам дыхания. Регуляция активной реакции крови или кислотно-щелочного состояния связана с тем, что гемоглобин обладает буферными свойствами.

Соединения гемоглобина. Гемоглобин, присоединивший к себе кислород, превращается в оксигемоглобин (НbО2). Кислород с гемом гемоглобина образует непрочное соединение, в котором железо остается двухвалентным (ковалентная связь). Гемоглобин, отдавший кислород, называется восстановленным, или редуцированным, гемоглобином (Нb). Гемоглобин, соединенный с молекулой углекислого газа, называется карбогемоглобин (НbСO2). Углекислый газ с белковым компонентом гемоглобина также образует легко распадающееся соединение.

Гемоглобин может входить в соединение не только с кислородом и углекислым газом, но и с другими газами, например с угарным газом (СО). Гемоглобин, соединенный с угарным газом, называется карбоксигемоглобин (НbСО). Угарный газ, так же как и кислород, соединяется с гемом гемоглобина. Карбоксигемоглобин является прочным соединением, он очень медленно отдает угарный газ. Вследствие этого отравление угарным газом очень опасно для жизни.

Лейкоциты

Лейкоциты делят на две группы: зернистые лейкоциты, или гранулоциты, и незернистые, или агранулоциты.

Зернистые лейкоциты отличаются от незернистых тем, что их протоплазма имеет включения в виде зерен, которые способны окрашиваться различными красителями. К гранулоцитам относятся нейтрофилы, эозинофилы и базофилы. Нейтрофилы по степени зрелости делятся на миелоциты, метамиелоциты (юные нейтрофилы), палочкоядерные и сегментоядерные. Основную массу в циркулирующей крови составляют сегментоядерные нейтрофилы (51-67%). Палочкоядерных может содержаться не более 3-6%. Миелоциты и метамиелоциты (юные) в крови здоровых людей не встречаются.

Агранулоциты не имеют в своей протоплазме специфической зернистости. К ним относятся лимфоциты и моноциты, В настоящее время установлено, что лимфоциты морфологически и функционально неоднородны. Различают Т-лимфоциты (тимусзависимые), созревающие в вилочковой железе, и В-лимфоциты, образующиеся, по-видимому, в пейеровых бляшках (скоплениях лимфоидной ткани в кишечнике). Моноциты образуются, вероятно, в костном мозге и лимфатических узлах. Между отдельными видами лейкоцитов существуют определенные соотношения. Процентное соотношение между отдельными видами лейкоцитов получило название лейкоцитарной формулы (табл. 1).


Таблица 1. Лейкоцитарная формула (в процентах)

При ряде заболеваний характер лейкоцитарной формулы меняется. Так, например, при острых воспалительных процессах (острый бронхит, воспаление легких) увеличивается количество нейтрофильных лейкоцитов (нейтрофилия). При аллергических состояниях (бронхиальная астма, сенная лихорадка) преимущественно возрастает содержание эозинофилов (эозинофилия). Эозинофилия наблюдается также при глистных инвазиях. Для вяло текущих хронических заболеваний (ревматизм, туберкулез) характерно увеличение количества лимфоцитов (лимфоцитоз). Таким образом, подсчет лейкоцитарной формулы имеет важное диагностическое значение.

Фагоцитоз протекает в четыре фазы: приближение, прилипание (аттракция), погружение и внутриклеточное переваривание (собственно фагоцитоз) (рис. 3).

Лейкоциты стимулируют регенеративные (восстановительные) процессы в организме, ускоряют заживление ран. Это связано со способностью лейкоцитов участвовать в образовании трефонов.

Лейкоциты (моноциты) принимают активное участие в процессах разрушения отмирающих клеток и тканей организма за счет фагоцитоза.

Функциональное состояние иммунной системы организма регулируется сложными нервными и гуморальными механизмами.

Тромбоциты

Функции тромбоцитов. 1) Принимают активное участие в процессе свертывания крови и фибринолиза (растворение кровяного сгустка). В пластинках обнаружено большое количество факторов (14), обусловливающих их участие в остановке кровотечения (гемостазе).

2) Выполняют защитную функцию за счет склеивания (агглютинации) бактерий и фагоцитоза.

3) Способны вырабатывать некоторые ферменты (амилолитические, протеолитические и др.), необходимые не только для нормальной жизнедеятельности пластинок, но и для остановки кровотечения.

Источник

АНАЛИЗ БИОХИМИЧЕСКИХ ПОКАЗАТЕЛЕЙ КРОВИ ЖИВОТНЫХ

В настоящее время интенсивные технологии в животноводстве зани­мают веду­щее значение. Процесс эффективного молочного и мясного произ­водства все стреми­тельней отдаляет условия содержания животных от их ес­тественной среды обитания. Сегодня уже смело можно сказать, что чем выше продуктивность животных, тем больше сбоев и срывов происходит из-за нарушения обмена веществ, в связи с особым значением кормления и содержа­ния. Поэтому все без исключения специалисты жи­вотноводства должны уча­ствовать в процессе не только производства продукции, но и создания ком­фортных условий пребывания животных на ферме.

Высокая продуктивность животных неразрывно связана с активизацией функ­ционирования всех органов и систем организма. При этом уровень об­мена веществ у некоторых животных настолько высок, что организм может работать на самоуничто­жение. К сожалению, многие руководители хозяйств, специалисты-зооинженеры, ве­теринарные врачи и даже ряд ученых этим пренебрегают. В наиболее распространен­ном понимании это выглядит так: «Животное имеет достаточно высокую продуктив­ность при имеющемся кормлении, качестве обслуживания и обработках– значит все нормально. Нужно еще поискать резервы экономии ресурсов». В результате таких на­строений многие не могут понять, почему при погоне за удоем стремительно сокраща­ется поголовье, почему коровы заканчивают третью лактацию на мя­сокомбинате с жи­ровой дистрофией печени и т.д.

В большинстве случаев мы замечаем от­клонения в здоровье, когда уже есть сим­птомы заболевания, а, значит, негативный фактор был, он оставил свой след в орга­низме и, теперь, выдает ответную реакцию орга­низма на его воздействие. Другими словами мы пропускаем, минимум два периода развития процесса – проникновение и распространение в организме. Разрабатывая наши рекомендации, надеемся, что вы, ре­гулярно пользуясь биохимическими исследованиями крови, сможете на ранних ста­диях неблагоприятного влияния своевременно отреагировать, классифицировать и принять меры к устранению воздействия.

Читайте также:  Видеоурок чарльз дарвин о причинах эволюции животного мира 7 класс

Кровь является одной из главнейших связующих систем целостного организма. Она обеспечивает питание и дыхание всех органов и тканей, снабжает их необходи­мыми ферментами, гормонами, медиаторами и дру­гими гуморальными веществами, без которых нормальное функционирова­ние организма невозможно. У здоровых жи­вотных при нормальных физиоло­гических условиях существует постоянство химико-морфологического со­става и физико-химических свойств крови. Кроветворные органы чувстви­тельно реагируют на различные физиологические и, в особенности на пато­логические, воздействия на организм изменением картины крови. Поэтому исследова­ние крови имеет большое диагностическое значение.

Конечно, нужно заметить, что определенную ценность биохимические показа­тели имеют при внутренних незаразных болезнях, интоксикациях, но в большей сте­пени отражают уровень кормления и обменные процессы. В связи с этим биохимиче­ские показатели не могут дать ответы на все вопросы, но при правильном понимании физиологических изменений становятся твердым основанием для принятия производ­ственных решений.

ОТБОР И ПОДГОТОВКА ПРОБ КРОВИ

Для того чтобы провести биохимическое исследование необходимо правильно про­извести отбор крови у животных.

Существует несколько вариантов взятия крови. Многие специалисты успешно их используют. Мы же остановимся на классическом (традиционном) способе.

У крупных животных кровь берут из яремной вены, расположенной в яремном же­лобе. Предварительно проводят антисептическую обработку – в месте вкола шерсть вы­стригают, поверхность кожи обрабатывают 70%-ным раствором спирта или 5% раствором йода.

Для взятия используют специальные инъекционные иглы заранее стерилизован­ные. Вкол проводят под углом 45 0 и во время набора крови иглу при­жимают к стенке про­бирки, чтобы избежать вспенивания.

Метод взятия крови у овец и коз такой же как и у коров.

У свиней кровь получают, отсекая кончик хвоста. У поросят оптимальным ме­стом для взятия служит полая вена.

У птицы кровь берут из разреза гребня или сережек. У гусей и уток пункцию бе­рут из мякоти ступней лапок.

Пробирки для отбора проб крови на исследования специалисты хо­зяйств могут по­лучать в ветеринарной лаборатории или заранее готовить в условиях хозяйства, если та­кая возможность имеется.

Во время подготовки специальной посуды на одно животное запасают по 2 био­ло­гических пробирки, объемом не менее 20 мл, и по 2 центрифуж­ных пробирки объе­мом 12 мл. В первую биологическую пробирку (20 мл) вносят 1%-ный раствор гепарина 2-3 капли или, если не определяется натрий в плазме крови, то для стабилизации исполь­зуют лимоннокислый натрий. В результате полученную плазму можно исследовать на калий, натрий, каротин, витамины А и С.

Вторую пробирку оставляют без изменений, так как в ней будут полу­чать сыво­ротку крови. В сыворотке крови определяют содержание общего белка, белковых фрак­ций, мочевины, общих липидов, общего холестерина, общего кальция, йода неор­ганиче­ского, активность щелочной фосфатазы и др.

В одну из центрифужных пробирок вносят 0,5 мл вазелинового масла и каплю 1%-ного гепарина. После длительного центрифугирования 20-30 мин. уже в плазме оп­реде­ляют резервную щелочность. Во вторую центрифужную пробирку вносят 5 мл 20%-ного раствора трихлоруксусной кислоты. В даль­нейшем из этой пробирки опреде­ляют глю­козу, неорганический фосфор и неорганический магний.

Для всех пробирок используются резиновые пробки, но в некоторых случаях до­пускаются пробки из ватных тампонов завернутых в марлевую по­вязку, при обязатель­ном условии стерилизации и вертикальной транспорти­ровки проб.

Таким образом, уже сама подготовка пробирок для взятия крови жи­вотных на ис­следование является трудоемкой и длительной. Поэтому в по­следнее время ее значи­тельно упростили. Например, для биохимического ис­следования отбирают по 2⁄3 20 мл пробирки, а для гематологического и того меньше. В первую очередь это связано с раз­работкой в научно-исследова­тельских институтах специальных диагностикумов для оп­ределения биохи­мических компонентов с более мягкими требованиями пробоподго­товки. Но и не последнее место занимает, конечно, сама точность и направление иссле­дований. Если в каких то реакциях вам не нужны сотые и тысячные доли (не научные исследова­ния) или вы уделяете большее внимание, каким то кон­кретным показателям, то, естест­венно, лучше упростить процедуру отбора.

БИОХИМИЧЕСКИЕ ПОКАЗАТЕЛИ

Каротин

Каротин является провитамином ретинола – витамина А. Содер­жится в расти­тельных кормах, молозиве, рыбьем жире. Наибольшее значение имеет β-каротин. В тонком ки­шечнике и печени β-каротин превращается в витамин А. Основное депо ка­ротина и ви­тамина А – печень.

Витамин А способствует биосинтезу холестерина, ускоряет обмен фосфорных соединений, участвует в обмене веществ, повышает реактивность и резистентность, участвует в процессах иммуногенеза, повышении фагоци­тарной активности лейкоци­тов и выработке антител, стимулирует рост и раз­витие животных.

Количество каротина в сыворотке крови определяют спектрофото­метрическим методом.

Принцип метода основан на щелочном гидролизе и экстракции витамина А и каротина из плазмы крови при помощи малолетучих растворителей и последующем спектрофотометрическом измерении поглощения света раствором при длине волны 328 нм для витамина А и 460 нм для каротина.

Материал для исследования – плазма крови.

Физиологические пределы: Содержание каротина в сыворотке крови повыша­ется в летний период и снижается в зимне-стойловый период. Уровень каротина в сы­воротке крови свидетельствует о величине поступления его в организм с кормами. Ус­воение его и превращение в витамин А зависит от интенсивности обменных процессов в организме.

Количество каротина в сыворотке крови животных

Источник

Интересные факты из жизни